Based off HTML5 Canvas ImageData, plus animation frames
// readimage.Image
{
width: 200,
height: 200,
frames: [
{ data: frame_1_rgba_buffer, delay: 100 },
{ data: frame_2_rgba_buffer, delay: 100 }
]
}
Each frame's data property is the same as HTML5 Canvas ImageData "data" except Node.js buffers instead of Uint8ClampedArray
// A two pixel image data
Buffer([
100, // RED
100, // GREEN
100, // BLUE
255, // ALPHA
200, // RED
0, // GREEN
99, // BLUE
255 // ALPHA
])
A 50's TV Emulation
function fiftiesTv(frameData, snowFrequency) {
for (var i = 0; i < frameData.length; i+=4) {
var maxSaturation = Math.max.apply(null, [
frameData[i], frameData[i+1], frameData[i+2]
])
// Add a glitchy "snowy" effect
if (maxSaturation % snowFrequency === 0) maxSaturation = 255
frameData[i] = maxSaturation
frameData[i+1] = maxSaturation
frameData[i+2] = maxSaturation
}
}
Buffers are a Node.js primitive for dealing with binary data.
Buffers are fast, Node.js is fast... safe to assume performance issues are in the code and algorithms I wrote.
Measure to make informed decisions!
I'm going to talk about three different types of performance data.
The unfortunate reality of performance tooling with Node.js:
Y = stack depth, X = % of total cpu time spent (Instructions)
Most useful:
Caveats
Y = stack depth, X = time (v8-profiler)
chart view, some aggregation
Most useful:
Caveats
Deoptimizations and compiler output (IRHydra2)
Most useful:
Caveats
From the logs I know that one of the slowest glitches is `replaceBackground`.
When given an animated gif it calculates a "background" frame, and then for each frame replaces the background with a provided replacement function.
function replaceBackground(frames, replacer, tolerance) {
tolerance = tolerance != null ? tolerance : 50
var background = medianFrame(frames)
for (var i = 0; i < frames.length; i++) {
var dupe = copy(frames[i].data)
replacer(dupe)
var rgba = frames[i].data
for (var j = 0; j < background.length; j += 4) {
var rDiff = Math.abs(rgba[j] - background[j])
var gDiff = Math.abs(rgba[j+1] - background[j+1])
var bDiff = Math.abs(rgba[j+2] - background[j+2])
if (!(rDiff > tolerance || gDiff > tolerance || bDiff > tolerance)) {
var start = (j > dupe.length) ? 0 : j
rgba[j] = dupe[start + 0]
rgba[j+1] = dupe[start + 1]
rgba[j+2] = dupe[start + 2]
}
}
}
}
Step 1: make a test and time it
/usr/bin/time node bg_fg.js img/spaceballs.gif
3.46user 0.02system 0:03.49elapsed 99%CPU (0avgtext+0avgdata 56308maxresident)k
0inputs+3232outputs (0major+11355minor)pagefaults 0swaps
The gif format is strange... gif optimization isn't handled correctly in the reading library, hence the failed background detection here. However, we're still able to collect good data!
Tool 1: Flame Graph
Tool 2: Timeline Graph
var profiler = require("v8-profiler")
profiler.startProfiling("bg")
// ...
bg(orig, function (err, img) {
gifwriter(img, function (err, gif) {
var data = profiler.stopProfiling("bg")
fs.writeFileSync("bg.cpuprofile", JSON.stringify(data))
fs.writeFileSync("./output/bg.gif", gif)
})
})
Two main things stand out: inxsearch and medianFrame. inxsearch is in a library, so for now let's focus on medianFrame.
The timeline chart shows medianFrame is calling avg which is calling sortPixels, which is the culprit of our perf issues.
function medianPixel(pixels) {
var sorted = sortPixels(pixels)
var mid = (sorted.length / 2) - ((sorted.length / 2) % 4)
return sorted.slice(mid, mid + 4)
}
function medianFrame(frames, alg) {
return avg(frames, medianPixel)
}
function avg(frames, alg) {
var len = frames[0].data.length
if (len === 1) {
return frames[0].data
}
var avgFrame = new Buffer(len)
for (var i = 0; i < len; i += 4) {
var pixels = new Buffer(4 * frames.length)
for (var j = 0; j < frames.length; j++) {
frames[j].data.copy(pixels, j * 4, i, i + 4)
}
var avgPixel = alg(pixels)
avgPixel.copy(avgFrame, i)
}
return avgFrame
}
function sortPixels(pixels) {
var split = []
for (var i = 0; i < pixels.length; i += 4) {
split.push(pixels.slice(i, i + 4))
}
var sorted = split.sort(function (a, b) {
return (a[0] + a[1] + a[2] + a[3]) - (b[0] + b[1] + b[2] + b[3])
})
var newbuff = new Buffer(pixels.length)
for (var j = 0; j < sorted.length; j++) {
newbuff[j * 4] = sorted[j][0]
newbuff[j * 4 + 1] = sorted[j][1]
newbuff[j * 4 + 2] = sorted[j][2]
newbuff[j * 4 + 3] = sorted[j][3]
}
return newbuff
}
Our image is 480x222 pixels by 30 frames
480 * 222 = 106560 // number of sortPixels calls
each sorting an array of 30 pixels
Tool 3: IRHydra2
Unfortunately IRHydra2 isn't much help for this issue, all our functions are inlined and never deopt.
Median calculation is slow because you need to sort. Let's try the mean instead
function meanPixel(pixels) {
if (pixels.length === 0) return new Buffer(4)
if (pixels.length === 4) return pixels
var p = new Buffer(4)
var r = 0, g = 0, b = 0, a = 0
for (var i = 0; i < pixels.length; i+= 4) {
r += pixels[i]
g += pixels[i + 1]
b += pixels[i + 2]
a += pixels[i + 3]
}
p[0] = (r / (pixels.length / 4)) >>> 0
p[1] = (g / (pixels.length / 4)) >>> 0
p[2] = (b / (pixels.length / 4)) >>> 0
p[3] = (a / (pixels.length / 4)) >>> 0
return p
}
/usr/bin/time node bg_fg.js img/spaceballs.gif
1.83user 0.03system 0:01.88elapsed 99%CPU (0avgtext+0avgdata 55316maxresident)k
0inputs+3104outputs (0major+11075minor)pagefaults 0swaps
From 3.49s to 1.88s!
Vastly improved by switching to mean from median. The output is different but acceptable. I'm convinced we could make it much faster by:
Keyword-triggered glitch chat using this library, try: